
SOFTWARE – PRACTICE AND EXPERIENCE

A case study on business process recovery using
an e-government system

Ricardo Pérez-Castillo1,∗,†, Ignacio Garcı́a-Rodrı́guez de Guzmán1, Mario Piattini1

and Ángeles S. Places2

1Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad,
4 13071 Ciudad Real, Spain

2Database Lab., Universidade da Coruña, Facultade de Informática, Campus de Elviña s/n,
15071 A Coruña, Spain

SUMMARY

Business processes have become one of the key assets of organization, since these processes allow them to
discover and control what occurs in their environments, with information systems automating most of an
organization’s processes. Unfortunately, and as a result of uncontrolled maintenance, information systems
age over time until it is necessary to replace them with new and modernized systems. However, while
systems are aging, meaningful business knowledge that is not present in any of the organization’s other
assets gradually becomes embedded in them. The preservation of this knowledge through the recovery
of the underlying business processes is, therefore, a critical problem. This paper provides, as a solution
to the aforementioned problem, a model-driven procedure for recovering business processes from legacy
information systems. The procedure proposes a set of models at different abstraction levels, along with
the model transformations between them. The paper also provides a supporting tool, which facilitates
its adoption. Moreover, a real-life case study concerning an e-government system applies the proposed
recovery procedure to validate its effectiveness and efficiency. The case study was carried out by following
a formal protocol to improve its rigor and replicability. Copyright q 2011 John Wiley & Sons, Ltd.

Received 22 October 2010; Revised 29 December 2010; Accepted 30 December 2010

KEY WORDS: business process mining; legacy system; ADM; model transformation; case study

1. INTRODUCTION

Business processes are increasingly becoming essential assets for organizations since they reflect
owner organizations’ logic of ‘how to’. Weske [1] states that a business process depicts a set
of activities performed in an organization that jointly realize a business goal. These descriptions
provide a means to map business objectives regarding how to best carry out operations within
organizations. Therefore, business processes also assist in the process of getting automated infor-
mation systems to achieve these business objectives [2]. Most organizations’ business processes
are currently supported by their enterprise information systems. Indeed, according to Heuvel [3],
business processes are usually the starting point for developing information systems as a part of
the requirement analysis.

However, according to Visaggio [4], enterprise information systems are not immune to software
erosion and software aging. These systems become progressively less maintainable over time as
a result of uncontrolled maintenance. The immediate effect of this maintenance is that the system

∗Correspondence to: Ricardo Pérez-Castillo, Alarcos Research Group, University of Castilla-La Mancha, Paseo de
la Universidad, 4 13071 Ciudad Real, Spain.

†E-mail: ricardo.pdelcastillo@uclm.es

Copyright q 2011 John Wiley & Sons, Ltd.

Softw. Pract. Exper.
Published online 11 February 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1057

2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

maintainability diminishes below the acceptable limits. The information system therefore becomes
a legacy information system and must be replaced with a new one.

Nevertheless, when organizations replace or update an enterprise information system, business
processes do not reflect changes occurring during the maintenance stage. Indeed, very often the
business processes documentation is neither updated nor documented at all [5]. Therefore, aging or
obsolete legacy information systems should not be entirely discarded because they might contain
a lot of latent meaningful business knowledge as a consequence of modifications over time [6].
This knowledge is embedded in the system and it might not, therefore, be present anywhere else.
Thus, according to [7], when a legacy system is replaced with another improved system, business
knowledge preservation is an important challenge that must be addressed.

Business knowledge preservation can be carried out by means of updating the system docu-
mentation, but the implicit business processes must also be recovered from the legacy system.
The recovered business processes can then be used by organizations in two ways: (i) to provide
business experts with a better understanding of the real, current operation of the organization and
(ii) if necessary, to develop the new improved system in order to mitigate the effects of the software
aging and erosion. The evolved system will thus support the current business processes and will
also improve the ROI (Return Of Investment) of the legacy system, since it extends its lifespan.

This paper deals with the problem of business process recovery from legacy information systems
in order to address the problem of business knowledge preservation. This is not a new problem,
and reverse engineering applied to the recovery of business logic from legacy systems has been
frequently addressed by business experts and software academics [8].

Reengineering has normally been used to obtain new improved versions of aged legacy systems
and, according to [9], this consists of three stages: reverse engineering, restructuring, and forward
engineering. The reverse engineering stage can obtain abstract representations of the system,
including the representation of business knowledge, which is then used in restructuring and forward
engineering stages. However, Khusidman and Ulrich [10] state that reengineering projects rarely
reach the business abstraction level, and typically reach only the system design level. According
to [11], reengineering additionally lacks in formalism and standardization. Indeed, the majority of
reengineering projects are usually carried out in an ad hoc manner.

Software modernization helps to solve the formalism and standardization problems of reengi-
neering. Software modernization, and in particular ADM (Architecture-Driven Modernization) as
defined by the OMG (Object Management Group) [12], advocates carrying out reengineering
processes by considering model-driven development principles. ADM-based processes deal with
all involved artifacts as models that conform to specific metamodels, and these processes also
establish model transformations between models to deal with different abstraction levels throughout
the three reengineering stages [13]. ADM-based processes therefore facilitate business process
recovery. This is owing to the fact that these processes appropriately manage the large conceptual
gap between legacy systems and business processes through the definition of models at different
abstraction levels and incremental transformations between those levels.

As a solution to the aforementioned problem, we introducedMARBLE (Modernization Approach
for Recovering Business processes from LEgacy systems) in a previous work [14], which is a
generic framework that implements how to use ADM to recover business knowledge from legacy
information systems. The objective of MARBLE is to provide the highest abstraction level during
the reverse engineering stage of ADM, i.e. the business knowledge that depicts the information
systems. TheMARBLE framework provides a solution to meet the demands detected by Khusidman
and Ulrich [10]. Moreover, it is aligned with the SOA (Service-Oriented Architecture) research
agenda developed by the SEI (Software Engineering Institute) [15], which reports that business
process recovery is needed for modernizing legacy information systems toward SOA systems.

This paper presents an entire functional business process recovery procedure framed in
MARBLE, which is specially implemented for object-oriented systems. The proposed procedure
is aligned with the four different abstraction levels proposed in MARBLE: L0 to represent the
legacy system; L1, which contains different platform-specific models (PSM) to depict different
software artifacts of the legacy system; L2, which integrates all the specific L1 models into

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

160

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

a platform-independent model (PIM), which is represented according to KDM (Knowledge
Discovery Metamodel) [16]; and finally L3 to represent the business process model.

Furthermore, the proposed procedure for recovering business processes defines three model
transformations between the four levels: (i) legacy source code is considered as the key software
artifact in L0, and static analysis as the reverse engineering technique used to extract mean-
ingful knowledge from L0 and represent it in L1; (ii) a model transformation based on QVT
(Query/Views/Transformations) to obtain a KDMmodel in L2 from code models in L1; and finally
(iii) a set of business patterns supported by means of a QVT transformation [17] to transform the
KDM modes in L2 into business process models in L3.

The last transformation can be additionally supported by the manual intervention of business
experts to refine the business processes obtained (e.g. by adding manual tasks that are not supported
by information systems). Thus, we propose a semiautomatic procedure for recovering business
processes. This can be considered as a critical point of our proposal, since it requires an addi-
tional manual intervention by experts. However, the proposed procedure has two main advantages
compared with the business process redesign by experts from scratch. First, redesign from scratch
is a more time-consuming and harder option than our proposal, which provides an initial mean-
ingful understanding of current business processes. Second, the manual business process redesign
by business experts does not consider the business knowledge embedded in legacy information
systems, which is not present in any other artifact.

In order to automate the approach and to facilitate its adoption, we also provide a tool especially
developed to support the proposed procedure for recovering business processes. This tool also
allows business experts to modify business processes at the end of the procedure. Moreover, the tool
has facilitated the conduction of an industrial case study involving a real-life information system
in order to empirically validate the proposal. The case study has been conducted by following the
formal protocol for case studies proposed by Brereton et al. [18] in order to improve the rigor and
validity of the study.

The case study involves an e-government system of the Spanish electronic administration. The
case study consists of the recovery of the embedded business processes, and it then evaluates the
effectiveness and efficiency of the proposed procedure framed in MARBLE. The effectiveness of
the procedure is validated in terms of whether the business processes recovered from the legacy
system faithfully represent the organization’s business behavior. Moreover, in order to validate the
efficiency of the proposal, the study evaluates the time spent on recovering the business processes
with regard to the size of the system. After result analysis, the case study reports that the procedure
enables business process recovery with adequate accuracy levels. The study also concludes that
the proposed framework is scalable to larger systems.

The remainder of this paper is organized as follows. Section 2 provides some notions to have a
better understanding of our proposal. Section 3 summarizes the works related to the business process
recovery and compares them with our proposal. Section 4 presents the proposed procedure for
recovering business processes embedded in legacy information systems. Section 5 summarizes the
most relevant details concerning tool implementation to support the proposed procedure. Section 6
presents the planning and execution of the case study that involves a real-life e-government system.
Finally, Section 7 discusses conclusions and future work.

2. BACKGROUND

The following subsections introduce the two main concepts to have a better comprehension of the
proposal: the ADM approach as well as the KDM standard.

2.1. ADM

The increasing cost of maintaining legacy systems, together with the need to preserve business
knowledge, has turned the modernization of legacy systems into a significant research field [19].

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

161

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Figure 1. Horseshoe modernization model.

ADM can be considered as a mechanism for software evolution, i.e. it makes it possible to
modernize legacy information systems and eradicates, or at least minimizes the negative effects
of the software aging phenomenon in legacy systems. According to [20], ADM is the process
of understanding and evolving existing software assets, and in addition, it restores the value of
existing applications. ADM is based on reengineering, but it considers different models as input
and output artifacts of the process, thus solving the formalization and automation problem found
in traditional reengineering.

The traditional horseshoe reengineering model [21] was adapted to ADM, which became the
horseshoe modernization model (see Figure 1). This model consists of three stages:

• Reverse engineering is represented by the left side of the horseshoe. It analyzes the legacy
system in order to identify the components of the system and their interrelationships. In turn,
the reverse engineering stage builds one or more representations of the legacy system at a
higher level of abstraction.

• Restructuring is represented by the curve of the horseshoe since this stage takes the previous
system’s representation and transforms it into another one at the same abstraction level. This
stage preserves the external behavior of the legacy system.

• Forward engineering is represented by the right side of the horseshoe because it generates
physical implementations of the target system at a low abstraction level from the previously
restructured representation of the system.

Moreover, the horseshoe modernization model considers three different kinds of models with
respect to the abstraction level [22]:

• Computation-independent model (CIM) is a business view of the system from a computation-
independent viewpoint at a high abstraction level. CIM models are sometimes called domain
models.

• PIM is a view of a system from the platform-independent viewpoint at an intermediate
abstraction level. PIM models abstract all implementation details.

• PSM is a technological view of a system from the platform-specific viewpoint at a low
abstraction level. A PSM combines the specifications in the PIM with the details that specify
how that system uses a particular type of platform or technology.

Transformations between the different kinds of models are formalized by means of the QVT
standard proposed by the OMG [23]. The QVT specification consists of two distinct but related
languages: (i) QVT-Operational language, which is procedural in nature, and (ii) QVT-Relations,
a declarative language. QVT makes it possible to define deterministic transformations between
models at the same abstraction level or at a different level. As a consequence, the model transfor-
mations can be automated in the horseshoe modernization model.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

162

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Figure 2. Layers, packages, and concerns in KDM (adapted from [16]).

2.2. KDM

In addition, the ADM Task Force in the OMG has defined the KDM standard [24], which has
also been recognized as the ISO 19506 standard [16]. The KDM standard defines a metamodel for
modeling all the different legacy software artifacts involved in a legacy information system. The
KDM metamodel provides a comprehensive high-level view of the behavior, structure, and data of
the legacy systems [16], but it does not represent procedural models of the systems such as UML
(Unified Modeling Language). While UML can be used to generate new code in a top-down way,
ADM-based processes involving KDM start from the legacy code and build a higher level model
in a bottom-up way [25].

KDM is a metamodel divided into layers representing both physical and logical software assets
of information systems at several abstraction levels [26]. KDM separates knowledge about legacy
information systems into various orthogonal concerns that are well known in software engineering
as architecture views. KDM consists of four layers of abstraction, each one based on the previous
layer [16] (see Figure 2).

• Infrastructure layer. is the layer at the lowest abstraction level and defines a small set of
concepts used systematically throughout the entire KDM specification. There are three pack-
ages in this layer: Core, KDM, and Source.

• Program elements layer. offers a broad set of metamodel elements in order to provide a
language-independent intermediate representation for various constructs defined by common
programming languages. This layer represents implementation level program elements and
their associations. This means that the program elements layer represents the logical view
of a legacy system. This layer has two packages: Code and Action. Both packages define a
single model, called the CodeModel.

• Runtime resource layer. enables the representation of knowledge about resources managed
by the legacy system’s operation environment, i.e. it focuses on those things that
are not contained within the code itself. It has four packages: Data, Event, UI, and
Platform.

• Abstraction layer. defines a set of metamodel elements whose purpose is to represent domain-
specific knowledge as well as provide a business-overview of legacy information systems.
This layer has three packages: Conceptual, Structure, and Build.

A very important challenge in business process recovery lies in the large conceptual gap that
exists between business processes and legacy systems. This must be gradually reduced. ADM
facilitates business process archeology by means of KDM, since it reduces the conceptual gap
due to the fact that it is organized into several layers at different abstraction levels [16]. Thus,
KDM makes it possible to carry out endogenous transformations (i.e. transformations between
models concerning the same metamodel) from models in lower layers to models in higher layers
of the KDM structure. Therefore, specific business knowledge is extracted directly from the legacy

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

163

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

system, at which point the implicit knowledge at a higher abstraction level can be inferred or
deduced from the prior knowledge.

3. RELATED WORK

Companies and academics have had a common trend for many years to recover business knowledge
embedded in information systems in order to preserve that valuable knowledge during system
evolution. For this purpose, several reverse engineering techniques have been used, although the
most common techniques are static and dynamic analyses. In addition, the recent advances in
model-driven development research area make it possible to improve the business knowledge
extraction mechanisms by means of model reuse, formalization, and standardization. Table I, and
in general this section, provides a comparison between different proposals in the literature for
recovering the embedded business knowledge. Table I frames each recovery procedure in a matrix
of software artifacts or knowledge sources in rows, along with the mechanism used to extract the
business knowledge in columns.

Some works address business knowledge recovery from legacy information systems by statically
analyzing the source code. Zou et al. [30] developed a model-driven framework based on a set of
heuristic rules for extracting business processes. This framework syntactically analyzes the legacy
source code and applies the rules to transform pieces of source code in certain business process
elements. Despite this work being based on the MDA approach, it does not consider ADM’s
standards like KDM. Since KDM facilitates the integrated representation of several heterogeneous
systems, this work is not able to recover system-transversal business processes executed through
more than one system. This proposal was validated by means of a case study concerning an
e-commerce system, but no formal protocol to conduct the case study was used.

In addition to source code, other software artifacts are also considered to statically obtain
business processes. Ghose et al. [31] provides a set of text-based queries executed in documentation
for extracting business knowledge, although this work is not based on the MDA approach. The
intent of this approach for text-to-model extraction is to look for cues within text documents that
suggest some process model fragments. This proposal was only validated through an example.

System databases are other artifacts used as input in business knowledge recovery based on
static analysis. Paradauskas et al. [32] recover business knowledge by means of the inspection

Table I. Comparison between business knowledge recovery proposals.

Extraction
technique

SW artifact

Not model-driven Model-driven

Static 
analysis

Dynamic 
analysis

Static 
analysis

Dynamic 
analysis

External expert
inform ation Cai et al. [27]

Eisenbarth et al.
[28]

* Proposed Business 
Recovery Procedure

Source code
Wang et al.

[29]
Zou et al. [30]

Documentation Ghose et al. [31]

Database Paradauskas et al. [32]
Pérez-
Castillo et al.
[33]

User interfaces
Di Francescomarino et 
al. [34]

Event logs
Günther et al. [35]

Ingvaldsen et al. [36]
van der Aalst et al. [37]

MARBLE
(Generic

framework)

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

164

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

of the data stored in databases together legacy application code. This work does not follow
model-driven development principles either. The authors of this work validated their proposal
through the development of a controlled example. Another work, taking database as the input
artifact, is provided by Perez-Castillo et al. [33], which proposes a model-driven reengineering
framework to extract business logic from relational database schemas. This work does not use the
KDM standard, thus it has the same limitation as the Zou et al. work. This proposal was validated
by means of a case study in which the framework was applied to a real legacy relational database.
Unfortunately, this study did not use a formal protocol to conduct the case studies.

Moreover, Wang et al. [29] present a framework for business rules extraction from large legacy
information systems based on static program slicing. Program slicing is a reverse engineering
technique consisting of the program decomposition into slices according to some criteria (e.g.
fragments of source code that uses a specific program variable). However, the framework is not
able to represent the recovered business knowledge in an understandable and standard way. This
work was validated by means of a large complex financial legacy system, but this validation did
not follow a formal protocol either.

All these works solely use static analysis as the reverse engineering technique, which has the
inconvenience that a lot of business knowledge is lost since it ignores all runtime knowledge.
Dynamic analysis deals with this problem, which makes it possible to consider the information
derived by system execution [38]. For instance, Eisenbarth et al. [28] present a business feature
location technique based on dynamic analysis. Previously, domain experts manually defined a set
of scenarios invoking features. The scenarios were then executed collecting business knowledge
mapped between general and specific computational units with respect to a given set of features.
This proposal does not follow model-driven principles, and in addition it does not extract business
knowledge according to any business process notation. This work demonstrated its applicability
by means of an example. Cai et al. [27] propose an approach that combines the requirement
reacquisition with a dynamic and static analysis technique to extract complex business processes
that are triggered by external actors. In a first step, the use cases are recovered through interviews
with the users of the legacy information system. In a second step, the system is dynamically traced
according to those use cases. Finally, the traces obtained in runtime are statically analyzed to
recover the business processes. This work was also validated by means of a non-formal case study.
Moreover, Di Francescomarino et al. [34] recover business processes by dynamically analyzing the
Web application GUI forms which are executed during the user’s navigation. This work additionally
provides a clustering algorithm to minimize the obtained business processes. However, this proposal
is not aligned with model-driven development principles either. This work was validated by means
of a case study that involves an e-commerce system, which was similarly conducted in a non-
formal way.

Other works addressing the dynamic approach provide process mining techniques that register
event logs focusing on Process-Aware Information Systems (PAIS), i.e. process management
systems such as Enterprise Resource Planning (ERP) or Customer Relationship Management
(CRM) systems. The nature of these systems (in particular their process awareness) facilitates the
registration of events throughout process execution. Event logs depict the sequence of business
process’ activities executed, and can be used to dynamically discover the current business processes.
There is much work following this approach, for instance, van der Aalst et al. [37] provides a large
industrial case study by applying different business process mining algorithms to discover business
process form event logs. This large study was not conducted following a formal protocol. Günther
et al. [35] also provide a generic import framework for obtaining event logs from different kinds
of PAIS. In addition, Ingvaldsen et al. [36] focus on ERP systems to obtain event logs from the
SAP’s transaction data logs. Both works do not follow the model-driven development principles.
These two proposals were validated, although they did not follow a formal protocol for conducting
case studies.

Dynamic analysis is more powerful than static analysis, since there is specific knowledge that
is known only at runtime (e.g. the specific data of the objects instantiated during execution).
However, the dynamic analysis usually requires source code modifications in order to aggregate

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

165

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

traces to register system execution information in an appropriate way. However, source code
modifications are not always possible since legacy information systems can be in the production
stage. Moreover, another point of controversy related to the usage of dynamic analysis techniques
in realistic environments is that it might be thought that a company or organization would not
accept the use of an automatically modified version of its information system. For this reason,
process recovery procedures based on the dynamic analysis technique should ensure that the source
code modification is carried out without affecting the behavior of the original information system,
i.e. in a non-invasive way.

4. BUSINESS PROCESS RECOVERY PROCEDURE

The proposed business process recovery procedure is framed in MARBLE. While MARBLE
depicts a general-purpose and extensible ADM-based framework for recovering business processes
(cf. Section 4.1), the concrete procedure presented in this paper establishes the three specific trans-
formations to deal with the business process recovery challenge (cf. Sections 4.2–4.4). Specifically,
this paper proposes a specific procedure based on static analysis as the main technique and focusing
on object-oriented source code and manual post-intervention by business experts as the unique
sources of knowledge.

4.1. MARBLE

The MARBLE framework proposed in [14] is a generic ADM-based framework. This framework
provides the guidelines to use the ADM approach and their standards like KDM for recovering busi-
ness knowledge from different legacy software artifacts and following different reverse engineering
techniques (i.e. MARBLE is a heterogeneous framework). That heterogeneity is achieved by using
the KDM standard to represent legacy information systems, which is a multi-view standard that
defines a metamodel at different abstraction levels. It is not feasible to use all knowledge sources
with all reverse engineering techniques at the same time. Therefore, the guidelines provided by
MARBLE must be particularly implemented for each software artifact as a knowledge source, as
well as for each reverse engineering technique.

Figure 3 shows the MARBLE framework, which is focused on the reverse engineering stage of
the horseshoe modernization model. MARBLE specifically defines four abstraction levels related to
four different kinds of models: L0 to L3. In addition, MARBLE specifies the model transformation
path needed to obtain each model at a specific level from the previous one (see Figure 3).

Figure 3. Overview of MARBLE.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

166

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

• L0: Legacy information system. This level represents the entire legacy system as it is in the
real world, as a set of interrelated software artifacts: source code, user interfaces, databases,
documentation, and so on.

• L1: Legacy information system models. This level contains a set of PSM models that can
represent one or more software artifacts of the legacy system. The models at the L1 level
are represented according to specific metamodels that specify how a software artifact uses a
particular type of platform or technology. For example, in a recovery procedure that follows
MARBLE, a hypothetic L1 level could be formed of a code model represented according to
the Java metamodel and a database model depicted according to the SQL metamodel.

• L2: KDM model. This level contains a sole PIM model that integrates all the specific PSM
models of the previous L1 level. In order to represent this model, MARBLE uses the KDM
metamodel, since it makes it possible to model all the artifacts of the legacy system in an
integrated and technological-independent manner. First, L2 is obtained in an integrated way
because L2 works as a KDM repository that can be progressively populated with knowledge
extracted from the different information systems of an organization. This is due to the fact
that the structure package at the last KDM abstraction layer (cf. Section 0) is able to represent
different systems, subsystems, components, architecture views, and so on. This is a key
advantage when business processes are transversely executed by multiple systems within
an organization. Second, L2 is represented in a technological-independent way due to the
fact that KDM standard abstract from the program element layer (the second layer of the
KDM metamodel) all those details concerning the technological viewpoint (e.g. the program
language). Thereby, the KDM repository at L2 can represent several legacy information
systems even when their program languages or platforms are heterogeneous.

• L3: Business process models. This level corresponds to models that represent the business
processes recovered from the legacy system, i.e. the model at this level is considered as
a CIM model. MARBLE uses the metamodel of the BPMN (Business Process Modeling
and Notation) standard [39]. BPMN offers a well-known graphical notation that is easily
understood by both system analysts and business experts.

The proposed business process recovery procedure defines the three concrete transformations
between these four levels. These transformations are presented in the following subsections.

4.2. L0-to-L1 transformation

The first transformation takes the different software artifacts from legacy information systems and
obtains a specific model for each one. The software artifacts considered in this transformation
depend on the specific business process recovery procedure framed in MARBLE. If the specific
method considers more artifacts, it will probably have more sources from which to extract the
business knowledge needed.

We are currently contemplating a recovery procedure framed in MARBLE, which considers
legacy source code as the unique software artifact since, according to [40], it is the artifact
that embeds most business knowledge. The L0-to-L1 transformation thus obtains a code model
that represents the source code of the legacy system at a low abstraction level, i.e. it considers
technological details. Indeed, this transformation is, in this case, tuned to analyze Java-based
systems. Nevertheless, this transformation can be extended in each case by considering more
program languages, which will imply more than one code model at L1, although those code models
would be then integrated at L2 through the KDM model.

The analysis can be carried out by means of different reverse engineering techniques such
as static analysis which examines the source code files, dynamic analysis which analyzes the
source code at runtime, and program slicing which studies the code and divides it into different
fragments. This transformation uses static analysis as the reverse engineering technique to extract
the necessary information. The transformation is therefore supported by a parser that syntactically
analyzes the Java source files of the legacy information system from a static viewpoint and builds
Java code models according to a Java metamodel. In particular, the parser analyzes the text of a
Java source file, considering it as a sequence of tokens (e.g. keywords, identifiers, and so on) to

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

167

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Figure 4. An example of the L0-to-L1 transformation for a product shipping system.

determine whether the text represents a valid Java code file. The parser builds an abstract syntax
tree of the Java code file on the fly, which represents a Java code model at L1.

An example will now be shown to illustrate the performance of the proposed transformations.
Let us imagine an information system supporting the product shipping of a reseller organization.
This example focuses on a certain piece of source code: the ResellerControler class of the domain
package (see Figure 4, left side). This class contains four methods that support four key functional-
ities of the system: (i) receiveOrder manages customers’ order requests; (ii) checkInventory checks
whether the products needed to fulfill a specific order are in stock; (iii) sendProducts manages the
dispatch of the products ordered; and finally (iv) sendInvoice generates and sends the invoice to
the customer.

According to the example, the L0-to-L1 transformation takes the Java source file (see Figure 4,
left-hand side) and obtains the abstract syntax tree representing the Java code model at L1 (see
Figure 4, right-hand side). The parser obtains a CompilationUnit element for each of the Java
source files analyzed, and then adds the PackageDeclaration and ImportDeclaration elements.
The parser then generates a ClassOrInterfaceDeclaration element for the class, which contains a
ClassOrInterfaceBodyDeclaration element for each method. Each method is represented through
a MethodDeclaration with a ResultType, MethodDeclarator, and a Block of Statement elements.
The Statement element is, in turn, specialized into several kinds of elements: ReturnStatement,
IfStatement, Expression, and so on. The right-hand side of Figure 4 shows the elements used to
represent the business logic implemented in the receiveOrder method.

4.3. L1-to-L2 transformation

The L1-to-L2 transformation is in charge of the transformation of the PSM models of L1 into a
single PIM model in L2 according to the KDM metamodel. The KDM model in L2 considers the

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

168

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Figure 5. Overview of action and code packages of the KDM metamodel.

code and action KDM packages that conform to the program element layer of the KDM metamodel
(see Figure 2). The proposal uses only these packages because legacy source code is the unique
artifact considered at L0 according to our procedure design.

Figure 5 shows the most important metaclasses in the code and action packages of the KDM
metamodel. According to the KDM code metamodel, each of the legacy systems analyzed must be
represented as an instance of the CodeModel metaclass, which is the root metaclass. A CodeModel
is composed of AbstractCodeElements, a metaclass that represents an abstract parent class for all
KDM entities that can be used as CallableUnit, StorableUnit, and so on. The CodeElement meta-
classes are also interrelated by means of AbstractCodeRelationships (action package),a metaclass
representing an abstract parent for all KDM relationships that can be used to represent the code
relationships, such as Flow, Calls, Reads, and Writes.

In order to establish the model transformation between the code model (the PSM model at L1)
and the KDM code model (the PIM model at L2), we use QVT to define the transformation. The
L1-to-L2 transformation specifically uses the QVT-Relation language, since the implementation of
the transformation is easy in a declarative manner. This is owing to the fact that the structures of
the Java metamodel (L1) and KDM code-action metamodel (L2) are very similar. Indeed, in some
cases the transformation is as simple as renaming the metaclasses between the two metamodels,
although the transformation may not be as trivial for other elements.

A QVT transformation consists of several relations focusing on the transformation of specific
elements. Each relation defines at least two domains of elements: (i) the source domain, tagged as
checkonly, which evaluates whether the specific configuration of elements of the input metamodel
(Java metamodel) exists, and the target domain, tagged as enforce, which evaluates the configuration
of elements of the output metamodel (KDM) and creates or destroys elements to satisfy the rules
of the relation. A QVT relation can also have when or where clauses which establish the pre- and
post-conditions of execution. Figure 6 shows a fragment of the proposed QVT transformation:
the class2compilationUnit and method2callableUnit QVT relations. The class2compilationUnit
relation transforms all the instances of theClassmetaclass in the Java code model (L1) into instances
of CompilationUnit in the KDM model (L2). The relation also examines the Method instances
belonging to the Class instance in the where clause (see Figure 6) and the method2callableUnit
relation is triggered. The method2callableUnit relation is in charge of the transformation of the
instances of the Method metaclass into CallableUnit instances with the same name and type. All
the different kinds of statements in the Java code model are then transformed into codeElement
instances by means of various QVT relations triggered in the where clause.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

169

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Figure 6. QVT relations to transform Java code models into KDM models.

To continue with the example, Figure 7 shows the KDM model obtained after the execution
of the proposed QVT transformation for the product shipping system. The KDM model contains
a Package instance named domain with a nested CompilationUnit instance named Reseller. The
CompilationUnit is obtained from the Class instance of the Java code model at L1. The Reseller
CompilationUnit instance contains an instance of the CallableUnit metaclass for each Java method
at L1. Each CallableUnit instance is also defined by means of different CodeElement and ActionEle-
ment instances. For example, the receiveOrder method is modeled as a CallableUnit containing
(see Figure 7): (i) an EntryFlow instance that defines the first KDM action in the unit (the first Java
statement, since a model’s sequentiality of actions is not clearly defined); (ii) a Signature instance
that defines the parameters of the unit; and finally (iii) an ActionElement instance that represents
the if statement in the Java method. The remaining CallableUnit instances have a similar structure.

4.4. L2-to-L3 transformation

The L2-to-L3 transformation is the last transformation and consists of two steps: (i) a model trans-
formation that obtains a first version of business process models and (ii) manual post-intervention by
business experts who modify and refine the business processes obtained in order to improve them.

First, the model transformation establishes a set of business patterns [41], which define which
pieces of the source code (represented in a KDM code model) are transformed into specific

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

170

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Figure 7. An example of the L1-to-L2 transformation for a product shipping system.

structures of a business process. The business process models at L3 are represented according to
the BPMN metamodel (see Figure 8). The BPMNmetamodel represents business process diagrams
(BPD) that involve four kinds of elements: (i) flow object elements such as events, activities, and
gateways; (ii) connecting object elements, such as sequence flows, message flows, and associations;
(iii) artifact elements, such as data objects, groups, and annotations; and (iv) swim lane elements
for grouping elements, such as pools and lanes.

The set of patterns are defined in terms of KDM and BPMN elements, and the last transformation
is thus independent of the program language and platform of the legacy system in contrast to the
first and second transformations. This signifies that the set of proposed patterns could also be used
with other systems in addition to Java-based systems.

Table II presents the set of proposed business patterns of the L2-to-L3 transformation. The
patterns take well-defined business patterns from the literature that have been successfully applied
by business experts in the modeling of business processes [41–44]. These business patterns are
adapted in order to consider which specific structure of the legacy system (represented in a
KDM model) is transformed into each specific business pattern. Each pattern therefore consists
of (i) a source configuration or structure of elements in the input model (KDM model in L2) and
(ii) a target structure of elements in the output model (BPMN model in L3).

In order to support the set of patterns, a model transformation is implemented using QVT-
Relations [17], which supports the pattern matching process. Each QVT relation searches for
instances of the source structures defined by each pattern. The QVT relations, which are defined
in a declarative manner, then enforce the creation in the business process model of instances of
the target structures of the pattern for each input instance found in the KDM model.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

171

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Figure 8. BPMN metamodel.

Figure 9 shows a fragment of the QVT transformation: the Package2Pool and CallableUnit2Task
relations. First, the Package2Pool relation transforms each instance of the Package metaclass into
a Process instance nested in a Pool instance with the same name. This transformation builds the
BPD skeleton in the business process model at L3 according to the P1 pattern (see Table II). The
where clause additionally triggers the CallableUnit2Task relation for each CallableUnit nested in
a CompilationUnit that belongs to the Package instance. Second, the CallableUnit2Task relation
transforms the CallableUnit instances into Task instances within the BPD supporting the P2 pattern
(see Table II). In the where clause, this relation calls the WritesStorableUnit-2DataObject relation
from among other relations, which implements the P6 pattern, that is called for each piece of data
written by the callable unit.

After the QVT transformation, business experts can modify the recovered business process
models in order to tune the organization’s processes. On the one hand, this is owing to the fact that
the business processes obtained may contain certain elements related to the technical nature of a
legacy system, which do not depict any of the organization’s business behavior. These elements
can therefore be removed, or perhaps renamed. On the other hand, the preliminary business
processes may lack certain business elements that depict specific aspects of the organization’s
business operation. They should thus be added to the recovered business processes. In this last
transformation the procedure therefore defines a set of manual operations that the business experts
can carry out. The finite set of operations consists of Add [A], Remove [R], Rename [RN], Join
[J], and Split [S]. The Join and Split operations can be applied solely to whole business processes
or activities, while the remaining operations can be applied to any kind of business element. In
addition, the Join and Split operations can be used together with the addition of Lanes to represent
information about several subsystems. Lanes representing subprocesses which are related by means
of certain data objects written by a subprocess and read by another one (e.g. data stored in a
database by a subsystem and loaded by other subsystem; or a subsystem invoking a service of
another one).

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

172

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Table II. Summary of the set of business patterns.

Sequence patterns Event patterns

P1. BPD skeleton. This pattern
creates the organizational struc-
ture of a business process model.
It creates a business process

diagram for each KDM code model and a pool element
with a nested process in the diagram for each package
of the KDM code model.

P5. Start. The task building from the
callable unit that starts the execution of

any program or application of the legacy system is
considered as the initial task. A start event is therefore
built into the BP diagram and a sequence flow from
this event to the initial task is also created.

P2. Sequence. This pattern takes
any callable pieces of code from

the KDM code model and maps them into tasks in the
BP diagram. The sequence of calls to callable units is
transformed into a set of sequence flows in the tasks
built from the callable unit.

P6. Implicit termination. This pattern
builds an end event in the BP model.
It then creates sequence flows from ‘end
task’ and these flows merge in the end

event. A task is considered to be an ‘end task’ if this
task does not have any outgoing sequence flow.

P3. Branching. This pattern trans-
forms each conditional jump of the
source code that has two mutu-

ally exclusive choices into an exclusive gateway and
two different sequence flows in the business process
model. These exclusive conditional branches are typi-
cally related to the if-then-else or switch statements in
several programming languages.

P7. Conditional sequence. This
pattern transforms each conditional
call into a sequence flow triggered

under a conditional intermediate event through to the
task related to the callable unit. It makes it possible
to create arbitrary cycles in the BP diagram.

P4. Collaboration. Each call to
external callable unit (i.e. API
libraries or external components
outside the system like remote

callable unit) is transformed into both an auxiliary task
and two sequence flows in a round-trip manner.

P8. Exception. Each call to
callable unit that manages any

exception is transformed into a task and a sequence
flow fired under an error intermediate event. It can be
considered as a specialization of the P7 pattern.

Data patterns

P9. Data input. This pattern transforms
each piece of input data within a callable
unit in the KDM code model into a data
object and an association between the

data object and the task previously built from the
callable unit. It only considers as input data the param-
eters or arguments of the callable unit, but it does not
consider the auxiliary variables within the callable unit.

P10. Data output. Each piece of output
data involved in a callable unit is trans-
formed into a data object and an associa-
tion from the task (built from the callable

unit) to the data object. It excludes as output data
the auxiliary and intermediate data in the body of the
callable unit. The output data is the data returned by
the callable unit or external data related to databases
or files.

In order to reduce the subjective viewpoint of the business experts, some recommendations are
provided to the business experts. These suggestions aid the decision-making process carried out by
business experts. The recommendations are automatically defined by analyzing and scoring certain
elements of the obtained business process models. There are mainly two kinds of recommendations.
The first kind of recommendations is provided when a business process (obtained from a particular
code package) has several business tasks related to other business processes (obtained from other
code package by applying the pattern P4. Collaboration), it suggests joining both business process
models obtained from two different code packages. The second kind of recommendation is provided
whether a certain business process model consists of two (or more) isolated connected graphs, it
suggests then that business experts split the model into two (or more) business process models.

To continue with the example, at the beginning the L2-to-L3 transformation obtains a first sketch
of the BPD from the KDM model by means of the QVT transformation. Figure 10(A) shows the
graphical representation of the business process model obtained during the QVT transformation.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

173

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Figure 9. QVT relations to implement the L2-to-L3 transformation.

This model contains 10 tasks in total, although only four tasks are related to the four CallableUnit
instances in the KDM model (see Figure 7), which are obtained by applying the P2.Sequence
pattern. The gateways are also created by applying the P3. Branching pattern. Moreover, six other
tasks are also obtained by applying the P4.Collaboration pattern (see Table II). This pattern is
applied to the three ActionElement instances of the CallableUnit instance named sendProducts in
the KDM model (see Figure 7). These action elements represent calls to methods not defined in
the same Java source file (e.g. update, setUnits, and insert), and these calls are thus represented
as external calls, which are transformed into six tasks with a round-trip sequence flow from the
previous tasks.

Figure 10(B) shows the business process model refined by business experts. There are three
principal improvements:

• The three tasks obtained from external calls are removed, since the business experts consider
that these tasks do not represent any of the organization’s business activities, i.e. these are
related to the technical dimension of the system.

Remove [‘getCustomer];
Remove [‘getUnits’];
Remove [‘insert’];

• A gateway is added to merge the two branches opened after the first gateway.

Add [ GATEWAY[‘sendProducts’, ‘gateway(CheckInventory)’, END] ];

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

174

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Figure 10. An example of business process models obtained for a product shipping system.

• The four remaining tasks are renamed by the business experts in order to fit the names to the
organization’s business activities.

Rename [‘receiveOrder’, ‘Receive Order’];
Rename [‘checkInventory’, ‘Check Inventory’];
Rename [‘sendProducts’, ‘Send Products’];
Rename [‘sendInvoice’, ‘Send Invoice’];
Rename [‘getProducts’, ‘List Products’];
Rename [‘update’, ‘Update Inventory’];
Rename [‘setUnits’, ‘Sell Product’];
Rename [‘msg’, ‘Invoice’];

Finally, Figure 10(B) shows the business process model that represents a part of the organization’s
behavior through the business process recovery from the piece of source code presented at the
beginning of this example (see Figure 4, left-hand side).

5. A SUPPORTING TOOL

An ad hoc tool has been developed to semiautomate the proposed procedure. This tool facilitates the
adoption of the recovery procedure as well as the execution of the case study. The tool is based on the
Eclipse platform and uses four key technologies. The first technology is JavaCC, which is a parser
generator for Java language [45]. The second technology is EMF (Eclipse Modeling Framework)
[46]. This Eclipse framework makes it possible to build specific metamodels according to the
ECORE meta-metamodel, the metamodel proposed by the Eclipse platform to define metamodels.
EMF also provides tools to produce source code from ECORE-based metamodels to automatically
build model viewers and editors. GMF (Graphical Modeling Framework) is additionally used
together with EMF to generate graphical model editors. The third technology is XMI (XML
Metadata Interchange), which defines the manipulation and interchange of models through XML

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

175

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Figure 11. The tool to support the business process archeology method.

[47]. All the models involved in the procedure are thus made persistent by means of an XMI file.
Finally, the fourth technology is MediniQVT [48], an open source framework which is a model
transformation engine for QVT-Relations.

The tool architecture is divided into three different modules aligned with each of the transfor-
mations defined in the procedure. The first module supports the L0-to-L1 transformation. It thus
consists of a static analyzer of Java source code, which is built though JavaCC from the EBNF
(Extended Backus–Naur Form) grammar of Java 1.5. This module takes a Java file as input and
then generates an XMI file as the output that represents the Java code model, a PSM model in L1
(see Figure 11(I)).

The second module executes a QVT transformation to generate the KDM model in L2 from the
previous Java code models using MediniQVT. This module also has a tree view editor for KDM
models and was built through EMF (see Figure 11(II)).

The third module also executes the QVT transformation of the L2-to-L3 transformation. More-
over, a graphical editor for BPD at L3 was developed using EMF/GMF (see Figure 11(III)), which
also provide an outline view to make the work easier (see Figure 11(V)). This editor therefore
allows business experts to modify and refine the business process models according to the proposed
set of manual operations in order to fit the first version of business processes to the real-life
organization’s behavior. For this purpose, the tool provides a palette of business elements (see
Figure 11(IV)).

6. CASE STUDY

This section presents a case study to validate the feasibility of the proposed business process
recovery procedure by applying it to an e-government system. In order to automatically apply the
proposal to the system, a tool that supports the entire depicted business process recovery procedure
has been developed. The case study is carried out by following the protocol for planning, conducting
and reporting case studies proposed by Brereton et al. [18]. The following sections present the
details of the main stages defined in the formal protocol: background, design, case selection, case
study procedure, data collection, analysis and interpretation, and validity evaluation.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

176

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Table III. Research questions of the case study.

Id Research question

MQ Can the recovery procedure properly obtain business processes from legacy information systems?
AQ1 Can the proposed business process recovery procedure obtain business processes with adequate

accuracy levels?
AQ2 Is the proposed business process recovery procedure efficient?

6.1. Background

The previous research on this subject must first be identified. The related work presented in Section 2
shows other proposals for recovering business processes from legacy information systems, and
compares these proposals with our procedure, considering four criteria. Our particular procedure
is (i) a model-driven framework (more specifically, an ADM-based framework) for recovering
business processes, which (ii) uses static analysis as the recovery technique, and (iii) source code
as the main software artifact in addition to business expert information. Moreover, (iv) the case
study is carried out by following a formal protocol for case studies [18].

The object of study is the proposed business process recovery procedure, and the purpose of
this study is the evaluation of specific properties of the proposed procedure related to effectiveness
and efficiency.

Bearing in mind the object and purpose of the study, the main research question (hereafter,
MQ) addressed by the study is the following: Can the recovery procedure properly obtain business
processes from legacy systems? In this question, the adverb properly means to obtain business
processes in an effective and efficient way. In order to find out if MQ is true, Table III shows the
additional research questions that are identified from the MQ question. The additional research
question AQ1 is established in order to evaluate whether the recovered business processes faithfully
represent the organization’s business behavior. That is, AQ1 aims to evaluate the effectiveness of
the procedure. Moreover, the additional research question AQ2 (see Table III) evaluates whether
the proposed business process recovery procedure obtains business processes efficiently.

6.2. Design

This case study consists of a single case, i.e. it focuses on a single legacy information system.
The case study also considers several analysis units within the case. This study can therefore be
considered as an embedded case study according to the classification proposed by Yin [49]. The
analysis units are the different source code packages of the legacy information system, which is the
independent variable of the study. Each source code package is represented in a model in L1 and
L2 and is then transformed into a business process model in L3 through the third transformation.
Despite the fact that there is a business process for each code package, the business process models
obtained can be joined or split by means of the business experts’ manual intervention according
to the L2-to-L3 transformation.

The study consists of the analysis of each business processes recovered in order to answer the
questions established in Table III. Some measures are therefore established to provide quantitative
answers to the proposed research questions. First, in order to evaluate the effectiveness of the
proposed procedure through the AQ1 question, the study proposes the use of two measures:
Precision and Recall. These measures were designed for information retrieval scenarios, although
they are usually applied to other mining scenarios like business process recovery among others [50].

On the one hand, the Precision measure indicates the amount of relevant recovered elements
within the set of recovered elements in a business process model. An element is considered
relevant if this element faithfully represents the organization’s business operations or business
behavior in the real world. On the other hand, the Recall measure represents the amount of relevant
recovered elements of the total of relevant elements (recovered and not recovered), which depicts
the organization’s entire business operation. While source code package is the independent variable,
these two measures are dependent variables in the study.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

177

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

The study considers the task element as the score unit in order to apply these measures in a
business process recovery scenario. The Precision measure (1) is therefore defined as the number
of true relevant tasks divided by the total number of relevant (recovered) tasks, i.e. the sum of
true relevant tasks and false relevant tasks that were incorrectly recovered. Moreover, the Recall
measure (2) is defined as the number of true relevant tasks divided by the total number of relevant
tasks, i.e. the relevant tasks of the business process and other tasks that should have been recovered
but were not recovered. Although Precision and Recall measures are adequate, there is an inverse
relationship between them. The extraction of conclusions with an isolated evaluation of these
metrics is consequently very difficult. These measures are therefore usually combined into a
single measure known as an F-measure (3), which consists of a weighted harmonic mean of both
measures.

PRECISION = |{relevant tasks}∩{recovered tasks}|
|{recovered tasks}| (1)

RECALL= |{relevant tasks}∩{recovered tasks}|
|{relevant tasks}| (2)

Fmeasure= 2 ·PRECISION ·RECALL
PRECISION+RECALL

(3)

We also use the business expert opinion to discover which recovered tasks are relevant or not
in order to evaluate the proposed measures. In this respect, the definition of relevant task is a key
factor in facilitating the business experts’ work, and it must be defined a priori. Despite the fact
that the evaluation of measures focuses only on the business tasks, the relevant task definition
implicitly considers other business elements, since the execution flow must not be ignored. The
relevant task definition establishes a set of four conditions. Condition C1 specifies that the task
must represent a real-life business operation within the organization. For instance, the task named
‘parseDate’ obtained from an auxiliary Java method does not represent any valuable business
activity. This condition must not be evaluated by considering task names, since these names are
inherited from legacy code and they may be biased as regards the real business activity names
provided by business experts. For example, the task named receiveOrder, despite its name is not
exactly Receive Product Orders, it represents the valuable business activity in charge of receiving
product orders. Condition C2 ensures that all the recovered tasks preceding the evaluated task must
be relevant tasks. In order to meet C2, there can be no non-relevant tasks with a sequence flow
to the evaluated task. In a similar way, Condition C3 ensures that all the following tasks must
be directly (or indirectly) recovered relevant tasks. The conditions C2 and C3 check the control
flow of business process models focusing on recovered tasks one by one. Finally, Condition C4
specifies that all the Data Object elements read and written by the evaluated task must also be
recovered.

Second, in order to answer question AQ2, this study evaluates the total time spent on executing
each transformation. The transformation time values are automatically measured for each analysis
unit of the study by the tool developed. The time values obtained are analyzed with regard to
the total number of elements built into each specific business process model. The purpose is to
discover if the proposed recovery procedure can be scalable to a larger legacy system. Both the size
of the business process models and the time values are also considered as the dependent variables
of this study.

6.3. Case selection

The case selection is a key stage in the case study planning, which aims to select a good and suitable
case to be studied. Table IV presents the five criteria established to select the most appropriate
software system. Cr1 guarantees that the legacy system selected is an information system that
supports an organization or company’s business operation. This criterion discards, for example,
embedded systems or real-time systems. Cr2 ensures that the legacy system will be a real-life

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

178

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Table IV. Criteria for case selection.

Id Criteria for case selection

Cr1 It must be an enterprise system
Cr2 It must be a real-life system
Cr3 It must be a legacy system
Cr4 It must be of a size not less than 100 KLOC
Cr5 It must be a Java-based system

system that is deployed in a production environment. Cr3 ensures that the selected system really
is a legacy information system. To evaluate this criterion the time in production is not used, since
it is not a good measure. Instead of production time, Cr3 considers the amount of modifications in
the system that alter the business processes, i.e. the system modifications related to the adaptive
and perfective maintenance according to [51]. Cr4 ensures that the system is not a toy program,
since it defines a threshold of 100 000 lines of source code. Finally, Cr5 guarantees that the system
is based on the Java platform, since both the proposed recovery procedure and the tool were
developed for Java-based systems.

After evaluating several available systems according to the previous criteria, the legacy infor-
mation system that was selected to be studied was eAdmin, an e-government system. This system
supports the electronic administration of a Spanish regional ministry of Housing and Urban Devel-
opment. This system automates all the services offered by the government and their document
management, thus meeting the Cr1 criterion. The first release of the system was moved to the
production stage 26 months ago, thus meeting the Cr2 criterion. During this time, the same devel-
opment team of the eAdmin system has made three medium modifications (versions 1.1, 1.2, and
1.3), a large modification (version 2.0), and two medium modifications (versions 2.1 and 2.2).
This ensures compliance with the Cr3 criterion. From a technological point of view, eAdmin is
a Web application and its architecture is separated into three layers: presentation, business, and
persistence. The technology used to develop the presentation layer was JSP (Java Server Pages),
Java for business layer, and Oracle together with JDBD-ODBC for the persistence layer. The total
size of the legacy system is 320.2 KLOC. Criteria Cr4 and Cr5 are therefore also met.

6.4. Case study procedure

In addition to the design and case selection of the case study, the execution procedure of the study
must also be planned. The execution is aided by the tool developed to support the procedure. The
case study procedure defines the followings steps:

1. After some meetings between the staff of the candidate organizations and researchers, a
legacy information system is selected according to the case selection criteria. The business
expert needed to perform the manual post verification is also selected in this step. In this
study, this person is the chief information officer of the Spanish regional ministry of Housing
and Urban Development, since this person has the highest level of expertise with regard to
the organization’s business activities.

2. The legacy system under study is implanted in an experimental environment: the source code
is deployed in a Web server, the database schema is built through the database scripts, the
initial data is loaded, etc.

3. The different business process models are obtained from the legacy source code using the
tool that supports the procedure (cf. Section 5). The execution hardware environment consists
of a computer with a RAM memory of 4GB and two processors each of 2.67 GHz.

4. The first sketch of business processes obtained through the model transformation is improved
by business experts. They fit the preliminary business processes with the reality of the
organization, i.e. they can add tasks that should have been recovered but were not recovered,
or remove tasks erroneously recovered. After business expert intervention, the accuracy of
business process models is evaluated by comparing each preliminary business process and its

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

179

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

related business process enhanced by business experts. We obtain the value of the proposed
measures like precision and recall by scoring the differences between the preliminary and
enhanced business processes.

5. The key information related to the generation of business processes (cf. step 3), along with
the business expert intervention (cf. step 4), is collected for each analysis unit according to
the data collection plan (cf. Section 6.5).

6. The data collected in the previous step are analyzed and interpreted to draw conclusions in
order to answer the research questions. Section 6.6 shows the outgoing results obtained in this
case study. Finally, the case study is reported and the feedback is given to the organization
and research community.

6.5. Data collection

The data to be collected and the data sources must be defined before starting the execution of the
case study. The following information is thus recorded for each analysis unit (see Table V): (i) the
number of source code files in each package; (ii) the number of business process models obtained
after the L2-to-L3 transformation; (iii) the total number of elements in the business process model
(the size of the model); (iv) the total number of recovered tasks in order to evaluate after the
Precision and Recall metrics; (v) the total transformation time in milliseconds. Finally, the bottom
part of Table V summarizes all the information by means of the total, mean and standard deviation
for each data column.

The right-hand side of Table V also summarizes the manual interventions by the business expert,
and thus presents (i) the ID number of each preliminary business process model and (ii) the inter-
model operation(s) carried out in each model or between models (e.g. rename, remove, join and
split models).

Table VI shows (i) the number of tasks recovered (before manual intervention); (ii) the number
of recovered relevant tasks, i.e. the number of tasks that the business expert marked as correct;
(iii) the number of recovered non-relevant tasks, i.e. the tasks removed from the business process
since they did not represent a business activity; (iv) Precision and (v) Recall values for each final
business process; and (vi) the harmonic mean between them. The measures are calculated with
data from the previous columns of this table. Table VI also presents (i) the total number of business
elements in each final business process and (ii) the total transformation times, which are derived
through aggregation from the data collected in Table V.

6.6. Analysis and interpretation

After the data have been collected, they are analyzed in order to draw conclusions. The analysis
should obtain the evidence chains from data to answer the research questions. In order to answer the
question AQ1, Figure 12 shows the box chart for Precision and Recall measures. The chart shows
the density distributions for the set of final business processes. The mean of the distribution of the
Precision measure (0.66) is lower than the mean of Recall measure (0.91). Moreover, the standard
deviation of the Recall measure is close to 0 (0.05), i.e. the central values of the Recall distribution
are more concentrated around the mean than the central values of the Precision measure (0.13).

The interpretation of these values is the following. On the one hand, a higher Recall value
means that the proposed procedure recovers a higher number of relevant business elements, i.e.
it recovers most of the tasks from the current business processes. On the other hand, the Recall
value contrasts with the low Precision value, which means that the number of non-relevant tasks
is very high with regard to the recovered tasks. A low Precision and a high Recall mean that
the preliminary business processes were obtained as large business processes with almost all the
relevant tasks (high Recall value), but they were obtained with a great amount of non-relevant
tasks (low Precision value) that were removed by business experts. The low Precision value, i.e.
the significant amount of non-relevant tasks, is due to the fact that some tasks are obtained almost
directly from the source code and they are related to the technical nature, and do not therefore
represent any piece of the embedded business knowledge.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

180

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Table V. Data collected in the case study.

# source Transf.
code # BPMN time Preliminary Manual intervention in

Package files models # Elements # Tasks (ms) BP Id business process models

d.seventhLaw 32 1 347 73 2001 1 J[22, 23], RN
[‘Administration’]

d.admin 75 1 485 77 5032 2 R
d.spfPurchase 44 1 556 70 5134 3 J[24], RN[‘Social

Protection Floor
MGMT’]

d.enclose 11 1 344 27 2548 4 J[25], RN[‘Document
MGMT’]

d.rent 140 1 1855 265 22850 5 J[26],RN[‘Rental House
MGMT’]

d.rnDocument 104 1 922 189 10195 6 J[28], RN[‘Renovation
Document Registration’]

d.common 82 1 604 121 5416 7 R
d.applicant 53 1 1340 191 12804 8 J[29], RN[‘House

Applicant MGMT’]
d.ppFiles 57 1 622 117 4690 9 J[30], RN[‘Personal File

MGMT’]
d.ruralHouse 38 1 595 107 8427 10 J[31], RN[‘Rural House

MGMT’]
d.developer 64 1 795 135 6348 11 J[32],RN[‘Developer

MGMT’]
d.renovation 20 1 511 54 10037 12 R
d.rnFacade 28 1 783 113 8666 13 J[34], RN[‘Renovation

MGMT’]
d.grants 39 1 471 85 4325 14 J[35], RN[‘Emancipation

Grant MGMT’]
d.secondHand 38 1 476 74 3369 15 J[37], RN[‘Second-Hand

House MGMT’]
d.user 10 1 216 48 1040 16 R
pdfhandler 6 1 490 55 2364 17 R
eRegistration 8 1 82 14 4385 18 R
security 11 1 145 30 1077 19 R
util 25 1 340 92 1795 20 R
web 9 1 322 67 1518 21 R
w.seventhLaw 10 1 76 12 503 22 J[1,23],

RN[‘Administration’]
w.admin 88 1 313 49 2267 23 J[1,22],

RN[‘Administration’]
w.spfPurchase 9 1 143 27 761 24 J[3], RN[‘Social

Protection Floor
MGMT’]

w.enclose 6 1 15 6 176 25 J[4], RN[‘Document
MGMT’]

w.rent 29 1 126 25 533 26 J[5],RN[‘Rental House
MGMT’]

w.help 1 1 69 1 86 27 R
w.rnDocument 27 1 125 15 543 28 J[6],RN[‘Renovation

Document Registration’]
w.applicant 15 1 154 22 406 29 J[8],RN[‘House

Applicant MGMT’]
w.ppFiles 20 1 112 17 559 30 J[9],RN[‘Personal File

MGMT’]
w.ruralHouse 7 1 79 11 1956 31 J[10],RN[‘Rural House

MGMT’]
w.developers 22 1 29 11 686 32 J[11],RN[‘Developer

MGMT’]
w.renovation 3 1 16 4 186 33 R

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

181

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Table V. Continued.

# source Transf.
code # BPMN time Preliminary Manual intervention in

Package files models # Elements # Tasks (ms) BP Id business process models

w.rnFacade 12 1 143 19 1420 34 J[13],RN[‘Renovation
MGMT’]

w.grants 12 1 196 37 976 35 J[14],RN[‘Emancipation
Grant MGMT’]

w.session 2 1 1 0 110 36 R
w.secondHand 11 1 181 31 933 37 J[15],RN[‘Second-Hand

House MGMT’]
w.user 13 1 88 19 560 38 R
w.validator 2 1 12 2 109 39 R

Total 1183 39 14179 2312 136791
Mean 30.3 1.0 363.6 59.3 3507.5
Std. deviation 31.6 0.0 384.3 59.9 4556.9

The results obtained are usual since there is an inverse relationship between Precision and Recall
measures. Figure 13 represents the inverse relationship between both measures, and shows the
results obtained (high recall, but low precision). The Precision value should, ideally, always be 1.0
for any Recall value but, according to [52], this is not possible in practice (see Figure 13). Thus,
owing to the fact that the relationship between both measures has an inverse nature, it is possible
to increase one at the cost of reducing the other. Indeed, the proposed procedure could reduce
its Recall value by recovering fewer tasks, at the cost of reducing the number of non-relevant
recovered tasks, i.e. increasing the Precision value. This hypothetical result is more desirable than
the obtained result, since the Precision and Recall values would be more balanced.

Indeed, the F-measure (3) can be considered as a special case of the general F�-measure (4),
where � is 1. The � value is used to weight the Precision in relation to Recall, and the selected
F1-measure (3) thus signifies that both precision and recall are equally important. A good balance
between Precision and Recall would therefore be better to obtain a higher F1-measure value

F� = (1+�)·PRECISION ·RECALL
�·PRECISION+RECALL

(4)

In order to jointly evaluate both measures, Figure 14 shows the F1-measure values obtained,
along with the Precision and Recall values for each final business process. The F1-measure has a
mean of 0.76 and a standard deviation of 0.10.

These values are additionally compared with reference values from other experiences with
model recovery in the literature, such as those of [53–55]. We found reports of Precision and
Recall values close to 60%, and these were our benchmark values. The values obtained for our
measures (Precision=66%, Recall=91% and F1−measure=76%) were therefore clearly above
60%, the reference value. Question AQ1 can consequently be positively answered, i.e. the proposed
procedure makes it possible to recover business processes from legacy information systems with
adequate accuracy levels. However, the F-measure value might be slightly improved by obtaining
more balanced Precision and Recall values.

The transformation time was also analyzed in order to answer question AQ2. After applying
the proposed recovery procedure, 39 preliminary business process models were obtained with an
average size of 363.6 elements (or 59.3 tasks) per BPD (see Table VI). The total time was 137 s
(2’28” approximately), and the processing rate is thus equal to 2.65 elements per second. Finally,
the time spent on processing each task was 2.31 s.

Despite the fact that the mean of the Precision is a medium value in this study, the time wasted as
a result of recovering non-relevant tasks is low. The total time if we consider only the final business
process models was, therefore, 103 s, and the time spent on recovering non-relevant processes thus
represents only 24.8%.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

182

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Ta
bl
e
V
I.
D
at
a
of

fin
al

bu
si
ne
ss

pr
oc
es
s
m
od
el
s.

#
R
ec
ov
er
ed

#
R
ec
ov
er
ed

#
R
ec
ov
er
ed

#
N
on
-r
ec
ov
er
ed

P
re
ci
si
on

R
ec
al
l

F
-M

ea
su
re

T
ra
ns
f.

Ta
sk
s

re
le
va
nt

ta
sk
s

no
n-
re
le
va
nt

ta
sk

re
le
va
nt

ta
sk
s

(R
cR

vT
/
R
cR

vT
+

(R
cR

vT
/
R
cR

vT
+

(h
ar
m
on
ic
)

ti
m
e

B
us
in
es
s
pr
oc
es
s
m
od
el

(R
cT

)
(R

cR
vT

)
(R

cN
R
vT

)
(N

R
cR

vT
)

+R
cN

R
vT

)
N
R
cR

vT
)

(m
ea
n)

#
E
le
m
en
ts

(m
s)

A
dm

in
is
tr
at
io
n

13
4

69
65

10
0.
51

0.
87

0.
65

73
6

47
71

S
oc
ia
l
P
ro
te
ct
io
n
F
lo
or

M
G
M
T

97
64

33
6

0.
66

0.
91

0.
77

69
9

58
95

D
oc
um

en
t
M
G
M
T

33
23

10
3

0.
70

0.
88

0.
78

35
9

27
24

R
en
ta
l
H
ou
se

M
G
M
T

29
0

22
1

69
9

0.
76

0.
96

0.
85

19
81

23
38
3

R
en
ov
at
io
n
D
oc
um

en
t
R
eg
.

20
4

16
9

35
3

0.
83

0.
98

0.
90

10
47

10
73
8

H
ou
se

A
pp
li
ca
nt

M
G
M
T

21
3

19
0

23
9

0.
89

0.
95

0.
92

14
94

13
21
0

P
er
so
na
l
F
il
e
M
G
M
T

13
4

74
60

9
0.
55

0.
89

0.
68

73
4

52
49

R
ur
al

H
ou
se

M
G
M
T

11
8

63
55

12
0.
53

0.
84

0.
65

67
4

10
38
3

D
ev
el
op
er

M
G
M
T

14
6

87
59

15
0.
60

0.
85

0.
70

82
4

70
34

R
en
ov
at
io
n
M
G
M
T

13
2

91
41

3
0.
69

0.
97

0.
81

92
6

10
08
6

E
m
an
ci
pa
ti
on

G
ra
nt

M
G
M
T

12
2

62
60

7
0.
51

0.
90

0.
65

66
7

53
01

S
ec
on
d-
H
an
d
H
ou
se

M
G
M
T

10
5

76
29

9
0.
72

0.
89

0.
80

65
7

43
02

M
ea
n

14
4

99
.0
8

44
.9
2

7.
92

0.
66

0.
91

0.
76

89
9.
8

85
89

.7
St
d.

de
vi
at
io
n

65
.5

60
.3
0

18
.9
4

3.
73

0.
13

0.
05

0.
10

43
7.
1

56
35

.0

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

183

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

Figure 12. The box chart for Precision and Recall measures.

1

1
0

Precision

Recall

Obtained result

Desirable result

Ideal relationship

Real relationship

Figure 13. Relationship between Precision and Recall measures, and obtained results.

A total time of 137 s for the proposed transformations seems feasible for the selected case,
since the size of the eAdmin is 320.2 KLOC. Nevertheless, the scalability of the procedure must be
evaluated. Under the hypothesis that the time complexity of the procedure theoretically is linear,
we established a linear regression model to check it and find out if the proposal is scalable. The
linear regression model considers the transformation time as a dependent variable and the size
of the analysis units as an independent variable. Figure 15 shows the scatter chart of size/time,
which represents two charts considering (a) the total number of elements (circle points) and (b) the
number of tasks (square points) as the size of each business process model. This chart also shows
the regression lines, which in both cases present a positive linear relationship between the model
size and the time spent on model transformations.

Moreover, Figure 15 shows the correlation coefficient R2, which is the degree to which the real
values of the dependent variable are close to the predicted values, i.e. how much the points are
fitted to the regression line. In this study, the correlation coefficient was 0.89, considering the total
elements as the model size, and 0.79 considering the task number as size. Since the correlation
coefficient value is between 0 and 1 for a positive linear relationship, these values are very high.
This signifies that the proposed linear regression model is suitable to explain the data obtained in

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

184

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

Figure 14. F-Measure values for the final business processes.

Figure 15. The size/time scatter chart.

this study, i.e. there is no quadratic or exponential relationship between transformation time and
model size. The increase in time for larger systems will consequently be linear, and the time will
thus be assumable.

This procedure is semiautomatic, thus the manual effort carried out by business experts must
also be analyzed besides the machine computation time. The selected business expert took 96.3min
to refine the first version of the business processes obtained by the tool. That effort focused on
the refinement of 39 preliminary business process models into 12 final models and the refinement
implied a total reduction concerning tasks over 37%. As a consequence, the total time spent on
recovering the embedded business processes through the proposed procedure was 98.8min. The
manual time spent on this study is greater than the computational time. However, the manual time
related to our proposal would be less than the time spent on a manual business process redesign
from scratch. In addition, the manual time will probably be linear with respect to the size of legacy
information systems in the same way as the computational time.

In conclusion, the AQ2 question can therefore be answered as true, and the main research
questionMQ is also answered as true, i.e. the proposed business process recovery procedure makes

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

185

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

it possible to obtain business process models from legacy information systems in an effective and
efficient way.

6.7. Validity evaluation

Finally, the validity of the results obtained in the case study must be evaluated. This stage evaluates
whether the results are true and not biased for the whole population to which we would generalize
the results. This section thus shows the threats to the validity of this case study. According to [56]
there are three main types of validities: internal, construct, and external validity.

6.7.1. Internal validity. There is no large population that makes it possible to obtain statistically
representative results, although a clear trend for the proposed measures was identifiable in this case
study. However, there are two determining factors related to obtaining the results presented here.
First, the tool used to obtain the business processes could be a factor that affects the transformation
time. This means that the measure values might be different if the business processes were obtained
with another tool supporting the same recovery procedure. Second, if this study is replicated
with other cases involving a different business expert, the results concerning Precision and Recall
measures might have some deviations as a result of the business expert’s manual intervention,
since this person provides his/her subjective point of view.

6.7.2. Construct validity. The measures of the case study were adequate to measure the variables
and answer the research questions appropriately. The Precision and Recall measures were reused
from the information retrieval field, in which these metrics have an adequate maturity level. These
measures also allow us check whether or not the business processes obtained faithfully represent
the organization’s business operative, since these values can be compared with reference values.
Moreover, the time and size measures allow us to answer the research question regarding the
scalability of the proposal.

6.7.3. External validity. Finally, external validity is concerned with the generalization of the
results. This study considers traditional legacy information systems as the whole population. In
this respect, the results obtained could be generalized to this population. However, the specific
platform of the selected case is a threat that should be noted. The results are thus strictly extended
to those legacy information systems based on object-oriented languages like Java.

7. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problem of business process recovery from legacy systems in order
to preserve valuable business knowledge. We have therefore presented a recovery procedure as
a possible solution, which is framed in MARBLE (an ADM-based framework). The proposed
procedure is characterized by three main features: (i) it focuses on legacy source code as the main
source of knowledge, (ii) it uses static analysis as a reverse engineering technique to extract the
information needed; and (iii) it follows the model-driven development principles, i.e. it considers
different models at different abstraction levels and a set of model transformations between them.
Furthermore, we have also developed a Java supporting tool in order to automate the procedure
and provide mechanisms for its adoption.

In order to validate the proposal, we have presented a real-life case study as a key contribution
of this paper. The selected case is an e-government system based on Java, which is used in
the application of the proposed recovery procedure. The case study aims to evaluate both the
effectiveness and efficiency of the proposal. In order to evaluate the effectiveness, we use the
Precision and Recall measures. We believe that these metrics are adequate to estimate the degree to
which the recovered business processes faithfully represent the organization’s business operation.
Moreover, in order to evaluate the efficiency, the case study evaluates the recovery time with

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

186

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

regard to the size of each business model. This evaluation allows us to check the scalability of our
proposal to large legacy systems.

The results obtained in the study show that the proposed procedure is suitable for recovering
business processes from legacy information systems from the point of view of effectiveness and
efficiency. That is, the procedure is able to obtain business processes that depict an organization’s
business behavior. Moreover, the case study was planned, conducted, and reported by following a
formal protocol for conducting case studies. This study can consequently be adequately replicated
in the future using other legacy information systems.

Our future work will address the identified threats to the validity. On the one hand, we hope to
use meta-analysis to contrast the results of this case with the results obtained for the same study
concerning other legacy information systems. On the other hand, we hope to replicate this study
with legacy systems based on other platforms or languages in order to compare and generalize
(if possible) the results obtained.

In addition to improving the validation of the proposed procedure, we also hope to refine it. In this
respect, we aim to incorporate the dynamic analysis in order to extract more and valuable business
knowledge. Other software artifacts could also be considered as databases or user interfaces in the
future.

ACKNOWLEDGEMENTS

This work was supported by the FPU Spanish Program; by the R+D projects funded by JCCM:
ALTAMIRA (PII2I09-0106-2463), INGENIO (PAC08-0154-9262) and PRALIN (PAC08-0121-1374), and
the PEGASO/MAGO project (TIN2009-13718-C02-01) funded by MICINN and FEDER.

REFERENCES

1. Weske M. Business Process Management: Concepts, Languages, Architectures. Springer: Berlin/Heidelberg,
Leipzig, Alemania, 2007; 368.

2. Jeston J, Nelis J, Davenport T. Business Process Management: Practical Guidelines to Successful Implementations,
(2nd edn). Butterworth-Heinemann (Elsevier Ltd.): NV, U.S.A., 2008; 469.

3. Heuvel W-JVD. Aligning Modern Business Processes and Legacy Systems: A Component-Based Perspective
(Cooperative Information Systems). The MIT Press: Cambridge, MA, 2006.

4. Visaggio G. Ageing of a data-intensive legacy system: Symptoms and remedies. Journal of Software Maintenance
2001; 13(5):281–308.

5. Lehman MM. Program evolution. Information Processing and Management 1984; 20(1–2):19–36.
6. Koskinen J, Ahonen J, Lintinen H, Sivula H, Tilus T. Estimation of the business value of software modernizations.

Information Technology Research Institute, University of Jyväskylä, 2004.
7. Paradauskas B, Laurikaitis A. Business knowledge extraction from legacy information systems. Information

Technology and Control 2006; 35(3):214–221.
8. Canfora G, Di Penta M. New frontiers of reverse engineering. Future of Software Engineering. IEEE Computer

Society: Silver Spring, MD, 2007.
9. Chikofsky EJ, Cross JH. Reverse engineering and design recovery: A taxonomy. IEEE Software 1990; 7(1):13–17.
10. Khusidman V, Ulrich W. Architecture-driven modernization: Transforming the enterprise. DRAFT V.5, OMG,

2007; 7. Available at: http://www.omg.org/docs/admtf/07-12-01.pdf [12 October 2007].
11. Sneed HM. Estimating the costs of a reengineering project. Proceedings of the 12th Working Conference on

Reverse Engineering. IEEE Computer Society: Silver Spring, MD, 2005; 111–119.
12. OMG. Architecture-driven modernization standards roadmap, 2009. Available at: http://www.omg.org/docs/

admtf/07-12-01.pdf [29 October 2009].
13. Newcomb P. Architecture-driven modernization (ADM). Proceedings of the 12th Working Conference on Reverse

Engineering. IEEE Computer Society: Silver Spring, MD, 2005.
14. Pérez-Castillo R, Garcı́a-Rodrı́guez de Guzmán I, Ávila-Garcı́a O, Piattini M. MARBLE: A modernization

approach for recovering business processes from legacy systems. International Workshop on Reverse Engineering
Models from Software Artifacts (REM’09). Simula Research Laboratory Reports: Lille, France, 2009; 17–20.

15. Lewis GA, Smith DB, Kontogiannis K. A research agenda for service-oriented architecture (SOA): Maintenance
and evolution of service-oriented systems. Software Engineering Institute, 2010; 40.

16. ISO/IEC, ISO/IEC DIS 19506. Knowledge discovery meta-model (KDM), v1.1 (Architecture-Driven
Modernization), 2009; 302. Available at: http://www.iso.org/iso/catalogue detail.htm?csnumber=32625 [19 March
2009].

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

187

Softw. Pract. Exper. 2012; :159–42 189



R. PÉREZ-CASTILLO ET AL.

17. Pérez-Castillo R, Garcı́a-Rodrı́guez de Guzmán I, Piattini M. Implementing business process recovery patterns
through QVT transformations. International Conference on Model Transformation (ICMT’10). Springer: Málaga,
Spain, 2010; 168–183.

18. Brereton P, Kitchenham B, Budgen D, Li Z. Using a protocol template for case study planning. Evaluation and
Assessment in Software Engineering (EASE’08), Bari, Italia, 2008; 1–8.

19. Daga A, Cesare SD, Lycett M, Partridge C. An ontological approach for recovering legacy business content.
Proceedings of the Proceedings of the 38th Annual Hawaii International Conference on System Sciences
(HICSS’05), Track 8, vol. 8. IEEE Computer Society: Silver Spring, MD, 2005; 224.1.

20. OMG, Why do we need standards for the modernization of existing systems? (OMG ADM Task Force), 2003.
21. Kazman R, Woods SG, Carrière SJ. Requirements for integrating software architecture and reengineering models:

CORUM II. Proceedings of the Working Conference on Reverse Engineering (WCRE’98). IEEE Computer Society:
Silver Spring, MD, 1998.

22. Miller J, Mukerji J. MDA Guide Version 1.0.1. OMG, 2003; 62. Available at: www.omg.org/docs/omg/03-06-
01.pdf [21 April 2010].

23. OMG. QVT. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, 2008. Available at:
http://www.omg.org/spec/QVT/1.0/PDF [21 March 2009].

24. OMG. Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model (KDM), v1.1, 2009; 308.
Available at: http://www.omg.org/spec/KDM/1.1/PDF/ [2 January 2009].

25. Moyer B. Software Archeology. Modernizing Old Systems. Embedded Technology Journal, 2009. Available at:
http://adm.omg.org/docs/Software Archeology 4-Mar-2009.pdf [1 June 2009].

26. OMG. Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model (KDM), v1.0, 2008; 310.
Available at: http://www.omg.org/docs/formal/08-01-01.pdf [7 August 2008].

27. Cai Z, Yang X, Wang W. Business process recovery for system maintenance—An empirical approach. 25th
International Conference on Software Maintenance (ICSM’09). IEEE CS: Edmonton, Canada, 2009; 399–402.

28. Eisenbarth T, Koschke R, Simon D. Locating features in source code. IEEE Transactions on Software Engineering
2003; 29(3):210–224.

29. Wang X, Sun J, Yang X, He Z, Maddineni S. Business rules extraction from large legacy systems. Proceedings
of the Eighth Euromicro Working Conference on Software Maintenance and Reengineering (CSMR’04). IEEE
Computer Society: Silver Spring, MD, 2004.

30. Zou Y, Lau TC, Kontogiannis K, Tong T, McKegney R. Model-driven business process recovery. Proceedings
of the 11th Working Conference on Reverse Engineering (WCRE 2004). IEEE Computer Society: Silver Spring,
MD, 2004; 224–233.

31. Ghose A, Koliadis G, Chueng A. Process discovery from model and text artefacts. IEEE Congress on Services
(Services’07), Salt Lake City, UT, 2007; 167–174.

32. Paradauskas B, Laurikaitis A. Business knowledge extraction from legacy information systems. Journal of
Information Technology and Control 2006; 35(3):214–221.

33. Pérez-Castillo R, Garcı́a-Rodrı́guez de Guzmán I, Caballero I, Polo M, Piattini M. PRECISO: A reengineering
process and a tool for database modernisation through web services. 24th Annual ACM Symposium on Applied
Computing (SAC’09), Hawaii, U.S.A., 2009; 2126–2133.

34. Di Francescomarino C, Marchetto A, Tonella P. Reverse engineering of business processes exposed as web
applications. 13th European Conference on Software Maintenance and Reengineering (CSMR’09). IEEE Computer
Society: Fraunhofer IESE, Kaiserslautern, Germany, 2009; 139–148.

35. Günther CW, van der Aalst WMP. A generic import framework for process event logs. Business Process
Intelligence Workshop (BPI ’06) (Lecture Notes in Computer Science, vol. 4103). Springer: Berlin, 2007; 81–92.

36. Ingvaldsen JE, Gulla JA. Preprocessing support for large scale process mining of SAP transactions. Business
Process Intelligence Workshop (BPI’07) (Lecture Notes in Computer Science, vol. 4928). Springer: Berlin; 2008;
30–41.

37. van der Aalst W, Reijers H, Weijters A. Business process mining: An industrial application. Information Systems
2007; 32(5):713–732.

38. Cornelissen B, Zaidman A, Deursen AV, Moonen L, Koschke R. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineering 2009; 35(5):684–702.

39. OMG. Business Process Model and Notation (BPMN) 2.0. Object Management Group, 2009; 496.
40. Müller HA, Jahnke JH, Smith DB, Storey M-A, Tilley SR, Wong K. Reverse engineering: A roadmap. Proceedings

of the Conference on the Future of Software Engineering. ACM: Limerick, Ireland, 2000.
41. Pérez-Castillo R, Garcı́a-Rodrı́guez de Guzmán I, Ávila-Garcı́a O, Piattini M. Business process patterns for

software archeology. 25th Annual ACM Symposium on Applied Computing (SAC’10). ACM: Sierre, Switzerland,
2010; 165–166.

42. Aalst WMPVD, Hofstede AHMT, Kiepuszewski B, Barros AP. Workflow patterns. Distributed and Parallel
Databases 2003; 14(3):5–51.

43. Zdun U, Hentrich C, Dustdar S. Modeling process-driven and service-oriented architectures using patterns and
pattern primitives. ACM Transactions on the Web 2007; 1(3):14.

44. Zhao L, Macaulay L, Adams J, Verschueren P. A pattern language for designing e-business architecture. Journal
of Systems and Software 2008; 81(8):1272–1287.

45. Open Source Initiative, JavaCC 4.2. A parser/scanner generator for java, 2009. Available at: https://javacc.dev.
java.net/ [3 February 2010].

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

188

Softw. Pract. Exper. 2012; :159–42 189



BUSINESS PROCESS RECOVERY USING E-GOVERNMENT SYSTEM

46. EMF, Eclipse Modeling Framework Project. The Eclipse Foundation. IBM Corporation, 2009. Available at:
http://www.eclipse.org/modeling/emf/ [15 December 2009].

47. OMG. XML Metadata Interchange. MOF 2.0/XMI Mapping, v2.1.1. OMG, 2007. Available at:
http://www.omg.org/spec/XMI/2.1.1/PDF [7 May 2007].

48. ikv++, Medini QVT. ikv++ technologies ag, 2008. Available at: http://www.ikv.de/index.php?option=com content&
task=view&id=75&Itemid=77 [25 October 2010].

49. Yin RK. Case study research. Design and Methods (3rd edn). Sage: London, 2003.
50. Pradel M, Bichsel P, Gross TR. A framework for the evaluation of specification miners based on finite state

machines. 26th IEEE International Conference on Software Maintenance (ICSM’10), Timioara, Romania, 2010.
51. ISO/IEC, ISO/IEC 14764:2006. Software Engineering—Software Life Cycle Processes—Maintenance, 2006.

Available at: http://www.iso.org/iso/catalogue detail.htm?csnumber=39064 [23 August 2006].
52. Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd

International Conference on Machine Learning. ACM: Pittsburgh, PA, 2006; 233–240.
53. Lucrédio D, Fortes RPM, Whittle J. MOOGLE: A model search engine. 11th International Conference on Model

Driven Engineering Languages and Systems. Springer: Toulouse, France, 2008; 296–310.
54. Ye Y, Fischer G. Supporting reuse by delivering task-relevant and personalized information. 24th International

Conference on Software Engineering. ACM: Orlando, FL, 2002; 513–523.
55. Garcia VC, Lucrédio D, Durão FA, Santos ECR, Almeida ESD, Fortes RPDM, Meira SRDL. From specification to

experimentation: A software component search engine architecture. Ninth International Symposium on Component-
Based Software Engineering (CBSE 2006). Springer: Västerås, Sweden, 2006; 82–97.

56. Wohlin C, Runeson P, Höst M, Magnus OC, Regnell B, Wesslén A. Experimentation in Software Engineering:
An Introduction. Kluwer Academic Publishers: Dordrecht, 2000; 204.

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

189

Softw. Pract. Exper. 2012; :159–42 189




